Lesson 30. Double Integrals over Rectangles

0 Warm up

Example 1. Find the value of

a.
$$\sum_{i=2}^{4} i =$$

b.
$$\sum_{i=1}^{3} \sum_{j=1}^{2} ij =$$

1 Review: area and integrals

• The definite integral of a single-variable function:

$$\int_a^b f(x) dx = \lim_{n \to \infty} \sum_{i=1}^n f(x_i^*) \Delta x$$

2 Volume and double integrals

• Let *R* be a rectangle in the *xy*-plane:

$$R = [a, b] \times [c, d] = \{(x, y) : a \le x \le b, c \le y \le d\}$$

- Let f(x, y) be a function of two variables
- What is the volume of the solid above *R* and below the graph of *f*?

- Idea:
 - Divide *R* into subrectangles of equal area ΔA
 - \diamond Grid with *m* columns (*x*-direction) and *n* rows (*y*-direction)
 - For each subrectangle R_{ij} :
 - \diamond Choose a **sample point** (x_{ij}^*, y_{ij}^*)
 - \diamond Compute the volume of the (thin) rectangular box with base R_{ij} and height $f(x_{ij}^*, y_{ij}^*)$.
 - Add the volumes of all these rectangular boxes

- Estimated volume:
 - This is called a **double Riemann sum**
- The **double integral** of f over the rectangle R is
- How do we choose sample points in each subrectangle?
 - o Upper right corner
 - o Lower left corner
 - o Midpoint rule: center of subrectangle
- If $f(x, y) \ge 0$, then the volume V of the solid that lies above the rectangle R and below the surface z = f(x, y) is

4 Iterated integrals

- **Partial integration** with respect to *x*: $\int_a^b f(x, y) dx$
 - Regard *y* as a constant (i.e., fixed, coefficient, etc.)
 - Integrate f(x, y) with respect to x from x = a to x = b
 - Results in an expression in terms of y
- \bullet Partial integration with respect to y defined in a similar way
- Iterated integrals: work from the inside out

$$\circ \int_{c}^{d} \int_{a}^{b} f(x,y) \, dx \, dy = \int_{c}^{d} \left[\int_{a}^{b} f(x,y) \, dx \right] dy$$

- ♦ Integrate first with respect to x from x = a to x = b (keeping y constant)
- \diamond Integrate resulting expression in y with respect to y from y = c to y = d

$$\circ \int_a^b \int_c^d f(x,y) \, dy \, dx = \int_a^b \left[\int_c^d f(x,y) \, dy \right] dx$$

- ♦ Integrate first with respect to from
- ♦ Integrate resulting expression in with respect to from

Example 5. Evaluate $\int_0^3 \int_1^2 x^2 y \, dy \, dx$.

Example 6. Evaluate $\int_1^2 \int_0^3 x^2 y \, dx \, dy$.

• Fubin	i's theorem fo	r rectangles.	If $R = [a, b]$	$\times [c,d]$, then	n:			
o ((f needs to sat)	isfy some con	ditions, e.g.	f is continuo	ous on R)			
。 I	Double integra	ıls over rectan	ngles can be	evaluated usi	ng iterated i	ntegrals		
o <u>(</u>	Order of integ	ration does no	ot matter!					
kample	e 7. Evaluate ∫	$\int_{R} (x - 3y^2) dx$	A, where R =	$= [0,2] \times [1,2]$	2].			
				bounded by	the surface	$x^2 + 2y^2 + z =$	= 16, the planes	s x = 2 and
= 2, and	d the three coo	ordinate plane	zs. 					

