Assoc. Prof. Nelson Uhan

## Lesson 30. Double Integrals over Rectangles

## 0 Warm up

Example 1. Find the value of
a. $\sum_{i=2}^{4} i=$
b. $\sum_{i=1}^{3} \sum_{j=1}^{2} i j=$ $\qquad$

## 1 Review: area and integrals

- The definite integral of a single-variable function:

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$



## 2 Volume and double integrals



- Let $R$ be a rectangle in the $x y$-plane:

$$
R=[a, b] \times[c, d]=\{(x, y): a \leq x \leq b, c \leq y \leq d\}
$$

- Let $f(x, y)$ be a function of two variables
- What is the volume of the solid above $R$ and below the graph of $f$ ?
- Idea:
- Divide $R$ into subrectangles of equal area $\Delta A$
$\diamond$ Grid with $m$ columns ( $x$-direction) and $n$ rows ( $y$-direction)
- For each subrectangle $R_{i j}$ :
$\diamond$ Choose a sample point $\left(x_{i j}^{*}, y_{i j}^{*}\right)$
$\diamond$ Compute the volume of the (thin) rectangular box with base $R_{i j}$ and height $f\left(x_{i j}^{*}, y_{i j}^{*}\right)$.
- Add the volumes of all these rectangular boxes

- Estimated volume:
- This is called a double Riemann sum
- The double integral of $f$ over the rectangle $R$ is
- How do we choose sample points in each subrectangle?
- Upper right corner
- Lower left corner
- Midpoint rule: center of subrectangle
- If $f(x, y) \geq 0$, then the volume $V$ of the solid that lies above the rectangle $R$ and below the surface $z=f(x, y)$ is

Example 2. Estimate the volume of the solid that lies above the square $R=[0,2] \times[0,2]$ and below $f(x, y)=$ $16-x^{2}-2 y^{2}$. Use a Riemann sum with $m=2$ and $n=2$. Use the upper right corners as sample points.

Example 3. Below is a contour map for a function $f$ on the square $R=[0,3] \times[0,3]$. Use a Riemann sum with $m=3$ and $n=3$ to estimate the value of $\iint_{R} f(x, y) d A$. Use the midpoint rule to take sample points.


## 3 Average value

- The average value of a function of two variables defined on a rectangle $R$ is

Example 4. Estimate the average value of the function $f$ in Example 3 on $R$.

## 4 Iterated integrals

- Partial integration with respect to $x: \int_{a}^{b} f(x, y) d x$
- Regard $y$ as a constant (i.e., fixed, coefficient, etc.)
- Integrate $f(x, y)$ with respect to $x$ from $x=a$ to $x=b$
- Results in an expression in terms of $y$
- Partial integration with respect to $y$ defined in a similar way
- Iterated integrals: work from the inside out
- $\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y=\int_{c}^{d}\left[\int_{a}^{b} f(x, y) d x\right] d y$
$\diamond$ Integrate first with respect to $x$ from $x=a$ to $x=b$ (keeping $y$ constant)
$\diamond$ Integrate resulting expression in $y$ with respect to $y$ from $y=c$ to $y=d$
- $\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x=\int_{a}^{b}\left[\int_{c}^{d} f(x, y) d y\right] d x$


Example 5. Evaluate $\int_{0}^{3} \int_{1}^{2} x^{2} y d y d x$.

Example 6. Evaluate $\int_{1}^{2} \int_{0}^{3} x^{2} y d x d y$.

- Fubini's theorem for rectangles. If $R=[a, b] \times[c, d]$, then:
- ( $f$ needs to satisfy some conditions, e.g. $f$ is continuous on $R)$
- Double integrals over rectangles can be evaluated using iterated integrals
- Order of integration does not matter!

Example 7. Evaluate $\iint_{R}\left(x-3 y^{2}\right) d A$, where $R=[0,2] \times[1,2]$.

Example 8. Find the volume of the solid that is bounded by the surface $x^{2}+2 y^{2}+z=16$, the planes $x=2$ and $y=2$, and the three coordinate planes.

Example 9. Evaluate $\int_{0}^{1} \int_{0}^{1} y e^{x y} d y d x$

